
Rethinking CPU-FPGA Interfaces: A Reconfigurable
RISC-V Co-Processor

Colin Drewes
University of California, San Diego

cdrewes@ucsd.edu

ABSTRACT
Field Programmable Gate Arrays (FPGAs) are a powerful
general purpose accelerator, particularly for highly paral-
liziable applications. Despite their versatility, their usefulness
is marred by slow development cycles and complex develop-
ment tools. As a result, CPU and FPGA hybrid systems to
leverage mass parallelism with simplified procedural control
have become commonplace—appearing on the same die as
with a System on a Chip (SoC), or connected as a separate
PCIe interface to a motherboard. Regardless of implementa-
tion, the FPGA is treated as a separate entity from the CPU,
and interaction between the two is limited to the established
protocol of the system. Though this model has taken steps
towards treating an FPGA as a co-processor instead of a pe-
ripheral, it lacks the efficient register-level computation of
traditional CPU instructions. The inability for the FPGA to
compute directly on shared memory as well as CPU registers
is a major limitation of such hybrid devices.

In this paper we will present the design of a CPU utilizing
an FPGA as co-processor with physical access to the regis-
ters as well as memory of the processor. This extension will
mirror that of co-processors in the RISC-V ecosystem. Such
a device will allow a user to specify a single assembly instruc-
tion to program the device, and a second instruction to trigger
the execution of the device. This architecture will have the
following improvements over standard CPUs and existing
CPU-FPGA hybrids: 1) ability to adjust at the hardware level
to changing workloads at runtime, 2) less wasted silicon on
specialized ASIC co-processors (crypto, vector operations...),
3) improved power efficiency, 4) and simplified compatibility
with other ISA extensions and deprecated instructions.

1. INTRODUCTION
As consumers continue to chase faster computational speeds

in a post-Moore’s law era, a shift away from the historical
dependence on CPUs must occur. The largest datacenter CPU
manufacturers in the world, Intel and AMD, have acted on
this, and begun diversifying their offerings particularly in the
FPGA space—with Intel’s acquisition of Altera in 2015 and
AMD’s acquisition of Xilinx in 2020. With the largest FPGA
companies in the hands of the largest CPU companies, it is
not unreasonable to expect that we will soon see a new gener-
ation of CPU-FPGA hybrid architectures aimed at addressing
the limitations of traditional microprocessors.

FPGAs have taken center stage as a chosen accelerator due
to their demonstrated success for many applications: includ-

ing networking, neural networks, and cryptography. Despite
great efforts however, the opportunity cost of leveraging these
devices—as a result of challenging developer tools and slow
design iterations—remains insurmountable for most. To ease
the development challenges, FPGAs have been more closely
integrated with CPUs, on the same die as with Systems on a
Chip like the Zynq-7000[1], or more decoupled over a PCIe
interface as with Amazon Web Services FPGA instances [2].
A data transaction from CPU→FPGAs must occur before
computation, then a transaction from FPGAs→CPU to return
the computed information.

Figure 1: High level combined software-hardware flow
for a CPU with a FPGA co-processor. A standard pro-
gram contains code targeted for the CPU (CPU Code),
and some Hardware Description Language (HDL Code)
kernel accelerators targeted for the FPGA co-processor.
Each HDL Code block accelerator will be compiled to a
bitstream and stored in a specialized Bitstream Memory
which can be quickly accessed by the CPU to reconfig-
ure the co-processor. Standard CPU code is compiled to
assembly and uses two specialized instructions that we
propose in this paper to configure the co-processor

In this paper we will present the design of an alternative
CPU-FPGA architecture. Instead of treating the FPGA as a
separate entity and limiting interaction to a predefined pro-
tocol (like PCIe), the device will be physically connected to
the CPU’s register file and memory as a co-processor. The
device can be interfaced on the instruction set level, allowing

1

for the rapid execution and reconfiguration of the FPGA in a
single instruction. This will allow accelerator designs to be
embedded directly into standard procedural code, compiled
in advance, then activated at runtime as shown in Figure 1.
We argue that such a CPU architecture will have the following
advantages:

1. This architecture has the ability to rapidly reconfigure
the FPGA co-processor (effectively adding an instruc-
tion to the ISA) during the execution of the program to
adjust to changing workloads on the CPU

2. Less dedicated silicon for intermittently used co-processors
is needed as all of this functionality can be reproduced
with the FPGA co-processor—potentially reducing the
dark silicon of the system

3. In reducing the amount of excess silicon for dedicated
co-processors, the overall power consumption of the
system is reduced, leading to a more efficient perfor-
mance per watt device

4. Backwards compatibility to older iterations of an ISA
without explicit silicon support—instructions simply
become configurations of the FPGA co-processor

The rest of this paper will be organized as follows. Section
2 discusses the current interest in embedding an FPGA as
a co-processor accessible via assembly instructions as well
as the proposed architecture used in this paper. Section 3
discusses the current state of ASIC co-processors, particu-
larly for the RISC-V ecosystem, and discusses how the FPGA
co-processor fits into this. The architecture of the proposed
RISC-V instructions are presented in Section 4, with com-
piler support for these in Section 5, and a hardware interface
as defined in Section 6. Then, in Section 7, we present
an implementation of this architecture purely on an FPGA,
leveraging a soft-processor and Xilinx partial reconfiguration.
Finally, we present the limitations in Section 9 and conclude
in Section 10.

2. RELATED WORK
A recently published patent application [3] by AMD is

the most similar to the work being discussed in this paper.
The primary goal of this patent—embed a reconfigurable
co-processor directly into the CPUs pipeline—is the very
same as the goals we have set out in this work. Instead of
the catch-all language intended to cast the largest net over
intellectual property however, our paper will provide a hy-
pothetical physical implementation of such a device and and
example use case.

3. RISC-V CO-PROCESSORS
The RISC-V instruction set is built on a base ISA and a

composition of useful extensions. An extension is in effect a
co-processor—a tightly integrated piece of silicon accessible
to the CPU itself. These extensions range in complexity, from
simple arithmetic additions (multiplication/division, floating
point, etc) to more complicated tasks like vector operations
and cryptography[4].

This architecture allows chip designs to implementat an
ISA catered to their specific needs while remaining within

the umbrella of RISC-V. These extensions have grown in
complexity, the most recent if which, cryptography primitives
for AES, SM4 and others, was recently ratified. However,
as these continue growing in complexity the total amount of
silicon in the chip will increase with the utilization of that
silicon at any given point decreasing.

The FPGA co-processor will take the place of the ma-
jority of these extensions through reconfiguration. Instead
of requiring custom silicon to implement new instructions
in a RISC-V core, only a bitstream to program the FPGA
is required under the system we propose. This offers simi-
lar functionality to that of the RISC-V extension ecosystem
with a moderate reduction in speed compared to ASICs, but
increases the re-usability of the co-processor silicon.

4. INSTRUCTION SET SUPPORT
We propose the addition of two instructions to the RISC-V

ISA: programming and execution. The program instruction,
discussed in Section 4.1, allows the programmer/compiler to
reconfigure the state of the FPGA with a new bitstream. The
execute instruction, discussed in Section 4.2, provides the
FPGA with register values and triggers its execution. After
the execute instruction, the FPGA has modified the memory
state, or computed a value which is sent to the destination reg-
ister of the original instruction. We examine a 32 bit version
of the RISC-V ISA, but the same principles are applicable to
any length. The details of this implementation follow:

4.1 Program Instruction
The program instruction merely needs to include the mem-

ory address of the bitstrem in memory which needs to be
loaded on the FPGA. This will be implemented as a U-type
instruction, which is takes the following form:

imm[31:12] rd[11:7] op[6:0]

The immediate value, bits [31:12], will encode the ad-
dress of a bitstream stored in memory which the CPU can
rapidly access. It is essential that the bitstream be stored
in local fast memory, as a primary goal is to reduce repro-
gramming overhead to the point that the FPGA can rapidly
switch tasks at runtime. This is an architectural decision
that is discussed in more detail later, but for now we assume
some region of memory at a particular offset—which con-
tains all of the FPGA re-configurations used in the execution
of the program—is addressed by the imm[31:12] value. The
rd[11:7] value serves no purpose in our implementation,
but could hypothetically used to distinguish between multiple
FPGA co-processors if such a design appeared beneficial.

RISC-V has built in a set of custom op-codes to the ISA
which serve no immediate purpose and are intended for exper-
imental extension of the standard ISA. According to the RISC-
V Foundation specifications [4], these instructions, custom-0
and custom-1, have a predefined opcodes of 0001011 and
0101011. We will use custom-0 for this instruction. Finally,
to program the FPGA co-processor the instruction takes the
following form (for brevity unused instruction space is ren-
dered as “-”):

Bitstream Offset[31:12] - 0001011

2

Once this instruction is issued the CPU may choose to stall,
if a simplistic in-order pipeline, or evaluate other instructions
while the FPGA is reconfigured. These all depend on the
underlying implementation of the CPU as well as the recon-
figuration speed of the FPGA which are addressed later. Our
implementation, which will be a simple single cycle in-order
core will stall till the part is complete with its reconfiguration.

4.2 Execute Instruction
Once the re-configurable co-processor has been programmed

in 4.1, it can be executed at any point with a second special-
ized instruction. This instruction will contain two source
registers and a single destination register. The source reg-
isters may contain either raw values, or an address within
memory where the FPGA should perform some reduction.
Similarly, after execution the destination register will contain
the result of the computation or nothing if the goal of the
FPGA was purely to manipulate data. The execute instruc-
tion will be in RISC-V R-type format. This is the structure of
a standard r-type instruction, which takes the following form:

funct7 rs2 rs1 funct3 rd op

The register values of rs2 and rs1 will be forwarded to
the FPGA co-processor. If applicable, any result will then
be stored in the register rd. Similar to the previous instruc-
tion, we will use the custom-1 opcode, which has a value
of 0101011. As a result the final instruction will appear as
follows:

- rs2[24:20] rs1[19:15] - rd[11:5] 0101011

Similar to the program instruction the CPU may choose to
stall as this execution is completed, or perform other compu-
tation if the FPGA’s computation is taking many CPU cycles.
This is implementation dependent, but we will examine later
in this paper the case of CPU stalling to await the result of
the computation.

While the custom-0 and custom-1 instructions are protected
in the RISC-V ISA, their use does not have native support
(meaning you may no longer expect “custom0” to be accepted
by the assembler). As a result we examine the common
technique for encoding custom instructions for the RISC-V
gcc compiler in the following section.

5. COMPILER SUPPORT
The .insn assembly instruction allows for a programmer

to leverage the numeric representation of instructions for the
assembler to interpret. This allows you to specify a chosen
RISC-V instruction format (R, I, U...etc), and provide the
arguments for the assembler to insert into that chosen format.
We can implement our two instructions with this method. The
.insn format for U-type instructions is as follows:

.insn u opcode, rd, simm20

For example, if given that a bitstream is located at some
offset into the bitstream address space of 0x00100, we may
construct the following Program Instruction to program the

device with this chosen design:

.insn u 0x0B, x0, 0x00100

This declares a U-type instruction with the opcode 0x0B
(00001011). This is the opcode encoding for the program
instruction, but with an extra 0 on the left hand side so it
may be encoded as two hexadecimal values which will be
truncated off in the 7 bit opcode. The U-type instruction
requires a register which serves no purpose in the program
step so we just use the hard-0 register x0.

We use a similar technique when we wish to execute the
co-processor. The .insn format of a R-type instruction is
given by:

.insn r opcode, func3, func7, rd, rs1, rs2

For example, if we wished to execute the FPGA with a two
input registers, a1 and a2, and store the any output in the des-
tination register a0, we could write the following instruction.

.insn r 0x2B, 0, 0, a0, a1, a2

In this case the opcode is given by 0101011 which we
encode with 0x2B. Again, this is one bit longer than the 7 bit
opcode and as a result the upper bit is truncated. The values
of func3 and func6 are unimportant for the co-processor,
and so they are zeroed.

This implementation allows us to write assembly code that
will directly utilize the extensions of our CPU architecture. It
will also allow us to embed FPGA control directly in our C
code with simplistic access (through the use of __asm__()).

Figure 2: The FPGA co-processor will sit adjacent to the
register decoding step of a simple RISC pipeline. When
a specialized instruction enters the pipeline, the decoded
register values as well as the original instruction will be
forwarded to the co-processor. Depending on the instruc-
tion, a design will be loaded onto the FPGA from the
Bitstream Memory, or the current design loaded on the
FPGA will be triggered with the input operands of the
instruction.

3

6. HARDWARE SUPPORT
We will examine amending a simple pipelined in-order

RISC-V processor with the FPGA co-processor. The high-
level architecture is presented in Figure 2. There are two ad-
ditions to the simple RISC pipeline: the FPGA Co-Processor,
and the bitstream memory. The FPGA Co-Processor is the re-
configurable fabric which can be programmed from bitstream
designs located in the Bitstream Memory. The Bitstream
Memory in Figure 2 stores all of the configurations of the co-
processor. This memory must be fast, and local to the FPGA
itself to accomplish efficient swapping of co-processor de-
signs. This specialized memory has access to the main CPU
memory in order for the bitstreams for a given application
to be loaded into the high speed Bitstream Memory. Once
a set of design bitstreams have been loaded into the recon-
figuration memory, the FPGA Co-Processor can be quickly
programmed with these designs. The two instructions we
present (Program and Execute), will be handled differently
when forwarded to the co-processor. Both cases will be han-
dled through the following interface on the CPU:

output [31:0] cproc_insn,
output [31:0] cproc_rs1,
output [31:0] cproc_rs2,
output cproc_valid,
input cproc_ready,
input cproc_wait,
input [31:0] cproc_rd,
input cproc_wr,

6.1 Program Instruction
In this instance, the cproc_ready signal will be held at

zero if the FPGA is left in an un-configured state. This
will prevent the CPU from erroneously triggering the co-
processor and expecting a result when it will never complete.
The cproc_wait is held at zero for the extent of the FPGA
reconfiguration. This signal will allow the CPU to stall as
the FPGA is reconfigured, and know when the Program In-
struction has completed. Alongside this, the instruction
itself is sent to the co-processor through the cproc_insn bus.
This allows the co-processor to access immediate values, par-
ticularly the simm2 value of the U-type instruction which we
use to encode the address s of a bitstream to be loaded. The
co-processor will be initialized, and the instruction forwarded,
only when the cproc_valid signal is asserted.

6.2 Execute Instruction
Similar to the previous instruction, the cproc_ready sig-

nal will be held at zero if the FPGA is left in an un-configured
state. Once configured, the core is ready to activate so
cproc_ready is asserted. When the cproc_valid signal is
asserted, and the FPGA activated, the cproc_rs1, cproc_rs2,
and cproc_insn values are forwarded to the co-processor.
The cproc_rs1, cproc_rs2 are the two input operands of
the standard R-type instruction, which have been decoded
from the Register File. As the FPGA computes, the
cproc_wait signal is asserted to communicate back to the
CPU that the instruction is active and awaiting completion.
After the completion of the FPGA, if the input instruction was
a standard R-type which has a return argument to a register,
that value can be set through the cproc_rd bus and written

back to the Register File with the assertion of cproc_wr.

Figure 3: A purely soft-implementation of a RISC-V
CPU (PicoRV) with a reconfigurable co-processor inter-
face. The PicoRV sits inside a statically defined region of
the FPGA. The core implements the Pico Co-Processor
Interface (PCPI), which enables communication from
the CPU pipeline to an accelerator. The accelerator in
this design is the co-processor sitting inside the partially
reconfigurable region of the FPGA. This region can be
modified at any point from the ARM processor, through
the Processor Configuration Access Port (PCAP).

7. A PURE FPGA IMPLEMENTATION
While it remains the end goal to have an hard CPU with an

embedded FPGA co-processor, the realities of an individual
creating such an integrated design are prohibitive. As a result,
it is the goal of this paper to provide a simplified physical
implementation of the proposed architecture to begin proto-
typing workloads that can benefit from this reconfigurable
co-processor.

We will offer the design of a pure-FPGA implementation.
This means that both the CPU will be implemented on the
reconfigurable fabric—as a soft-processor—and the FPGA
co-processor will be integrated on the same fabric with partial
reconfiguration. Partial reconfiguration is a tool offered on
particular Xilinx parts that allows applications to reserve a
region of the FPGA fabric to be dynamic, meaning it can be
updated at runtime [5]. This dynamic region will become the
co-processor, while the static region will hold the CPU and
logic for reprogramming the dynamic region.

Figure 3 presents the high level architecture of this design.
We will utilize a Zynq-7000 FPGA for this implementation,
but any part with dynamic reconfiguration capabilities will
suffice. Both the static region and the dynamic region are
present on the same FPGA fabric. The static region holds
the CPU which is the PicoRV, a 32 bit RISC-V microproces-
sor targeted for FPGA platforms as discussed in Section 7.2.
Internal to the PicoRV is the Pico Co-Processor Inter-
face (PCPI), which allows us to interpret custom instruc-
tions and dispatch those to the reconfigurable co-processor
logic—discussed in Section 7.3. Once the PCPI forwards the
instruction and relevant register data to the Co-processor
Decoder, as discussed in Section 4, there are two possible

4

results: 1) the instruction calls for the activation of the Recon-
figurable Co-Processor, at which point the logic in the
dynamic region is activated or 2) the instruction specifies the
address of the new partial bitstream (FPGA configuration file)
to reprogram the co-processor which is handled entirely on
the FPGA with the Peripheral Configuration Access
Port (PCAP) as discussed in Section 7.4. We now discuss
these structures in greater depth, as well as the method in
which we interact with this system.

7.1 RISC-V-On-PYNQ
We leverage a tool, RISC-V-On-PYNQ [6], designed for

interacting with soft-processors on an FPGA system, partic-
ularly for the Pynq-Z2 platform. Pynq-Z2 is a development
board which implements the Zynq-7000 part and provides
the infrastructure to run Linux on the associated ARM core.
This means the FPGA can be programmed from the on-board
ARM chip, streamlining the testing of designs. The Pynq-Z2
also offers a Python interface for programming and inter-
acting with data to and from the FPGA. The RISC-V-On-
PYNQ package takes this a step further to allow us to pro-
gram and execute RISC-V processors running on the FPGA
fabric through a Python interface. This will be used to prime
the the PicoRV with a program, and write the partial reconfig-
uration bitstreams to memory so that they may be access from
within the FPGA fabric for reconfiguring the co-processor.

7.2 PicoRV Processor
The PicoRV CPU is a 32 bit microprocessor designed to

be used on FPGA systems [7]. It is configured to implement
the RISC-V RV32IM instruction set. This implementation of
the PicoRV in particular is configured with a hybrid 128KB
of BRAM memory space and 256MB of DDR memory space.
The advantage of the BRAM memory is its speed, due to
it being embedded directly into the FPGA fabric—though
this locality comes at the cost of size. This memory space
is primarily used as instruction memory. The DDR memory
space, as it is connected to the processing system, is ideal
for exchanging data to and from the ARM CPU of the Zynq
chip. We will be able to map our co-processors directly into
the DDR memory space, allowing for in-memory reductions.
Our core is operation at 50MHz, a fairly conservative speed
for this core (rated for Fmax = 250MHz).

7.3 Pico Co-Processor Interface (PCPI)
Besides the simplicity of the PicoRV, it also has the benefit

of being equipped with an existing co-processor interface—
the Pico Co-Processor Interface (PCPI). When an unsup-
ported instruction is encountered in the PicoRV pipeline, the
following information is forwarded out of the PCPI:

output pcpi_valid
output [31:0] pcpi_insn
output [31:0] pcpi_rs1
output [31:0] pcpi_rs2

The pcpi_valid signal indicates the co-processor should
be activated with a given instruction pcpi_insn, and de-
coded register values pcpi_rs1 and pcpi_rs2. When the
co-processor has completed the following interface is used
for returning results to the PicoRV:

input pcpi_wr
input [31:0] pcpi_rd
input pcpi_wait
input pcpi_ready

The assertion of pcpi_wr will enable register write back,
which will store pcpi_rd into the destination register of the
original instruction. Activating pcpi_wait will signal to
the PicoRV that the instruction was correctly received and
is being processed as weall as causing the pipeline to stall,
and importantly that the instruction is legal and should not
cause a hardware trap. Once execution has completed, the
pcpi_ready signal communicates to the PicoRV pipeline
the completion of the co-processor execution and the pipeline
is unstalled.

Co-processor

PicoRV32

PCPI

Figure 4: The implemented PicoRV + FPGA Co-
Processor design on the Zynq-7000. The pblock_pr_0
region defines the reconfigurable region of the fabric
which is used for the co-processors. The PCPI, and a set
of muxes (in grey) used for assuring the state during re-
configuration, bridge the gap between processor pipeline
and the accelerator.

7.4 Partial Reconfiguration
Partial reconfiguration is an “expert” (read: poorly docu-

mented) flow within the Vivado design tools [5] that allows a
full bitstream to have "partial" regions of its design reconfig-
ured with "partial bitstreams." In our design, the full bitstream
contains the PicoRV, and the partial bitstream contains the
co-processor. In Figure 4 the partial region is contained in a
"p-block" labeled pblock_pr_0. The static region is every-
thing outside of that "p-block."

There are two primary methods for partial reconfiguration
on the Zynq-7000 part: Internal Configuration Access Port
(ICAP), and Processor Configuration Access Port (PCAP) [5].
We will examine the timing overhead of each of these tech-
niques, as quick reconfiguration is essential, and base on

5

implementation on that.

7.4.1 Internal Configuration Access Port
The ICAP interface allows an internal design of the FPGA

to reconfigure a region of the FPGA [8]. The advantage of this
method is everything is internal to the FPGA, and there is no
reliance on the potentially slower ARM processor for recon-
figuraion. According to Xilinx documentation [9], the ICAP
is capable of reconfiguring a 134,392 Byte partial bitstream
in 1,060µs. Our partial bitstreams are 598K in size, which is
≈ 4.5 times as large. According to [9] this reconfiguaration
time scales roughly linearly, and so we can expect that our
regionfigurable region will take 1,060µs∗4.5 = 4770µs. As
our processor is running at 50MHz, a reconfiguration will
take 4770µs

1
50MHz

= 238500 cycles. In order words, under these

estimates our processor will have to stall for 238500 cycles
to reconfigure the co-processor. This is an unrealistic amount
of time to stall the CPU pipeline, as the vast majority of
computations would have been completed using standard in-
structions in the amount of time it takes to reconfigure the
co-processor.

7.4.2 Partial Configuration Access Port
The PCAP interface allows the ARM processor, rather

than the FPGA fabric itself, to reconfigure a region of the
FPGA [5]. According to [9], reconfiguration from the PCAP
through the Linux interface will take 2,000µs. Using the
method as Section 7.4.1: 9000µs

1
50MHz

= 450000 cycles. This is

worse than the ICAP interface, but both are infeasible to use
at runtime. For simplicity, we will use the PCAP interface,
as it is integrated with the PYNQ interface which adds great
ease in reconfiguring the co-processor. However, this means
we will not be capable of reconfiguration within a single pro-
gram, which is unfortunate, but the partial reconfiguration
speeds on this device are prohibitive. Reconfiguration of the
co-processor remains useful though as co-processor demands
vary between a user’s application and the co-processor could
be configured in advance depending on the demands of a
single application. We will move forward with this simplifi-
cation, but it remains the original goal to have rapid on-the-fly
reconfiguration as presented in Section 1.

8. SOFTWARE + HARDWARE DEMO
We now leverage our design in 7 to accelerate a simplistic

and common CPU task: computing the popcount, or Ham-
ming distance, of an unsigned integer. The goal here is to
compute the number of 1s in a binary representation of a
number. This has particular value in cryptography and infor-
mation theory. We will implement this both with and without
co-processor acceleration, and study the difference. First, we
discuss the method for timing code execution on the PicoRV
core.

8.1 RISC-V rdcycle Instruction
The RV32IM instruction set the PicoRV implements has

built in support for getting the internal cycle cout of the
processor. This value can be accessed with the rdcycle
x0 instruction, where x0 is the destination register for the
current cycle count. The instruction can be used as above in

raw assembly, but also embedded in C code and read into a C
variable as follows:
__asm__("rdcycle a0");
register unsigned int start __asm__("a0");

This allows us to quickly time applications in C.

8.2 Standard Implementation
%% riscvc pop_c overlay.processor

unsigned int pc(unsigned x, unsigned y) {
int c = 0;
for(; x!=0;x>>=1)

if(x&1)
c++;

int q = 0;
for(; y!=0;y>>=1)

if(y&1)
q++;

return c+q;
}

int main(int argc , char ** argv) {
unsigned int x = 0xFFFFFFFF;
unsigned int y = 0xFFFFFFFF;
__asm__("rdcycle a0");
register unsigned int start __asm__("a0");
unsigned int pop = pc(x,y);
__asm__("rdcycle a1");
register unsigned int end __asm__("a1");
return end -start;

}

This application times the execution of computing the pop-
count of two unsigned integers. After running this on the
PicoRV, we get a return value of 6570 meaning this program
takes 6570 cycles to complete. For comparison, we hardware
accelerate this using the FPGA co-processor.

8.3 Co-Processor Implementation
We first need to build the hardware accelerator, which we

can do simply in verilog. This core accepts two 32 bit inputs,
which are the unsigned integers we wish to compute the
popcount of. After computing the popcount, we forward the
result back, and assert the done signal. This core is compiled
into a partial bitstream, which can be used to reconfigure the
co-processor.

module cp_popount(
input clk,
input[31:0] pcpi_rs1,
input[31:0] pcpi_rs2,
output reg[31:0] pcpi_rd = 0,
input trigger,
output reg done = 0

);
integer i;
always @(posedge clk) begin

if (trigger) begin
for(i=0;i<32;i=i+1)

if(pcpi_rs1[i] == 1'b1)
pcpi_rd = pcpi_rd + 1;

for(i=0;i<32;i=i+1)
if(pcpi_rs2[i] == 1'b1)

pcpi_rd = pcpi_rd + 1;

6

done <= 1;
end else begin

done <= 0;
end

end
endmodule

We then can leverage this accelerator from within our C
program. To do this, we write a simple function, pc, which
executes the co-processor instruction and then returns the
value. From within our main method, we call this function
and time its execution.

%% riscvc pop_c overlay.processor

extern unsigned int pc(unsigned x, unsigned y);
__asm__("pc:\n \

\t .insn r 0x2B , 0, 0, a0, a0, a1\n \
\t ret \
");

int main(int argc , char ** argv) {
unsigned int x = 0xFFFFFFFF;
unsigned int y = 0xFFFFFFFF;
__asm__("rdcycle a0");
register unsigned int start __asm__("a0");
unsigned int pop = pc(x,y);
__asm__("rdcycle a1");
register unsigned int end __asm__("a1");
return end -start;

}

This program takes 547 cycles to complete in comparison
to the 6570 cycles of the unaccelerated version. Our accelera-
tor results in a 12X speedup over a standard implementation.

9. LIMITATIONS

9.1 Harware Limitations
This architecture is primarily motivated by the ideal of

more efficient silicon use: both in space and power. We make
only an informal argument in this paper that by compressing
potentially many ASIC co-processors into a single FPGA
will reduce silicon usage and power consumption—this needs
much deeper analysis. Partial reconfiguration also proofed
to be far to slow at least within the Zynq-7000 to reach the
desired runtime reconfiguration of the co-processor.

9.2 Software Limitations
The goal of this project is to enable software developers

to create micro-kernel hardware accelerators for their appli-
cations. This has no future with the current state of Xilinx
toolchains, which are unintuitive with poorly documented
features. High Level Synthesis tools begin to solve this prob-
lem, but they still rely on a significant amount of knowledge
about underlying hardware to effectively utilized.

10. CONCLUSION
In this paper we have presented the architecture of a re-

configurable RISC-V co-processor. Utilizing an FPGA em-
bedded directly into a CPU’s pipeline, we can dynamically
adjust to the needs of a given program, and maybe even even-
tually the changing needs of a single program. Through the
tight coupling of CPU pipeline and FPGA, we can design
specialized instructions for interfacing the co-processor at

the ISA level, which adds speed and simplicity. We present
a hypothetical "soft" implementation entirely on an FPGA
leveraging the PicoRV processors and partial reconfiguration.
A minimal example is presented showing a simple task, the
popcount of an integer, can be accelerated by 12X through
minimal hardware development effort.

11. REFERENCES
[1] P. L. PL, “Zynq-7000 all programmable soc overview,” 2012.

[2] J. Shan, M. R. Casu, J. Cortadella, L. Lavagno, and M. T. Lazarescu,
“Exact and heuristic allocation of multi-kernel applications to multi-fpga
platforms,” in Proceedings of the 56th Annual Design Automation
Conference 2019, pp. 1–6, 2019.

[3] A. G. Kegel, “Method and apparatus for efficient programmable
instructions in computer systems,” Dec. 31 2020. US Patent App.
16/451,804.

[4] R.-V. Foundation, “The risc-v instruction set manual, volume i:
User-level isa,” 2017. Document Version 2.2.

[5] Xilinx, “Partial reconfiguration,” 2018.

[6] D. Richmond, M. Barrow, and R. Kastner, “Everyone’s a critic: A tool
for exploring risc-v projects,” in 2018 28th International Conference on
Field Programmable Logic and Applications (FPL), pp. 260–2604,
IEEE, 2018.

[7] C. Wolf, “Picorv32 - a size-optimized risc-v cpu.”
https://github.com/cliffordwolf/picorv32, n.d.

[8] Xilinx, “Axi hwicap v3.0,” 2016.

[9] C. Kohn, “Partial reconfiguration of a hardware accelerator on
zynq-7000 all programmable soc devices,” 2013.

7

https://github.com/cliffordwolf/picorv32

	Introduction
	Related Work
	RISC-V Co-Processors
	Instruction Set Support
	Program Instruction
	Execute Instruction

	Compiler Support
	Hardware Support
	Program Instruction
	Execute Instruction

	A Pure FPGA Implementation
	RISC-V-On-PYNQ
	PicoRV Processor
	Pico Co-Processor Interface (PCPI)
	Partial Reconfiguration
	Internal Configuration Access Port
	Partial Configuration Access Port

	Software + Hardware Demo
	RISC-V rdcycle Instruction
	Standard Implementation
	Co-Processor Implementation

	Limitations
	Harware Limitations
	Software Limitations

	Conclusion
	References

