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Abstract—The 60 year trend of exponentially increasing com-
putational efficiency is coming to a close. This scaling has relied
primarily on 1) the exponential decrease in the capacitance of
transistors by reduction in gate size, and 2) a reduction in the
voltage difference between a logical 0 and logical 1. Regardless of
continuing scaling innovations in the next decade, we will reach a
theoretical wall in reducing transistor energy in traditional digital
logic. This has prompted researchers to consider alternative
models of CMOS based computation.

Their key observation is that there is nothing intrinsic to com-
putation that necessitates the dissipation of heat when processing
a logical signal. Heat dissipation in digital logic is primarily due
to the destruction of information (i.e flipping a bit). This is an ar-
tifact of digital design being primarily surjective and non-injective
(i.e an AND gates collapse 4 possible input configurations into 2
possible output configurations). This has prompted researchers to
consider reversible computation as an alternative computational
paradigm. This involves a transformation of digital logic to be
bijective at all levels (logical reversibility) while recapturing signal
energy after reversing the computation (physical reversibility).
Under this construction, there is no known theoretical limit on
the amount of energy that can be recovered from a computation.

However, full logical and physical reversibility demand new
simulation libraries, HDLs, processor implementations, and com-
piler/programming languages. In this paper, we will present
the idea of globally irreversible locally reversible architecture for
processor design. This will exploit the energy savings of reversible
computation locally (across a single RISC-V instruction), but
retain simple programability through global (across successive
RISC-V instructions) irreversibility.

I. INTRODUCTION

We begin with a description of irreversible computation.
It is trivial to see that our current model of digital logic
is inherently irreversible. For example, observe the possible
transformations from inputs to outputs for a standard NAND
gate. This gate is performing a non-injective operation (i.e
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it is not possible to recover the input from the output). OR,

NOR, AND all follow a similar structure. This is what we know
to be an irreversible operation, where either a bit is erased
or computational paths are merged. According to Landauer’s
limit, any irreversible operation must generate an amount of
energy or heat lower bounded by:

E = kBT ln 2

where kB is the Boltzman constant [2]. While Landauer’s limit
is a hard lower bound at 0.0175 eV (at room temperature
20◦C) per bit erased, real-world constraints prevent energy
expenditure from decreasing bellow 1 keV [3]. This paradigm
leaves no path for decreasing gate energy bellow 1 keV, let
alone reaching and exceeding the Landauer limit. As a result,
there is no possible long-term energy scaling for digital logic
without considering novel paradigms.

Consequently, reversible computation [1] has been pro-
posed. No limits such as the Landauer’s principle are known
for reversible computation [1] as there can exist—under proper
implementation—no bit erasure. For example, consider the
following design of the NAND gate [9]:
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In contrast to the standard NAND implementation, this gate is
injective. A similar process can be taken to construct injective
versions of AND, OR, NOR, etc [9]. These gates are logically
reversible, and the building blocks for reversible computation.

However, logical reversibility is necessary but not sufficient
for reversible computation (and thus reducing energy dissipa-
tion). The injective gates must be implemented in a physically
reversible way, so that the charge used in the computation
may be recovered as opposed to being dissipated in heat
energy. Physical reversibility, or the recovery of energy, relies
on being able to unwind the computation (i.e perform the
computation backwards). This necessitates logical reversibility,
as to perform the computation backwards there must be
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Fig. 1. Carlin Vieri’s Pendulum processor data path from [8]. All operations
are fully reversible.

sufficient products to recompute the inputs. There are multiple
ways to implement physical reversibility, but this work will
examine S2LAL presented in [4] although this is not the focus
of this work.

While the benefits of reversible computing are clear, its
adoption requires redesigning the entire computer stack. New
EDA tools are needed to implement the physical reversibil-
ity, HDLs to describe reversible gates, processor architec-
tures/ISAs, and programming languages/compilers. This ap-
pears insurmountable to many.

To ease the transition to reversible computing, this work
aims to present at a high level a processor architecture that
exploits the benefits of reversible computing in localized areas,
but will separate these reversible logic blocks with irreversible
copy operations, and so, be globally irreversible. We claim this
will result in the majority of power saving gains that reversible
computation will offer, while not requiring new ISAs and
programming language paradigms.

II. S2LAL

Static two-level adiabatic logic (S2LAL), pioneered by
Michael Frank [7], is one possible approach for physically
realizing CMOS based reversible computing. Note that phys-
ically reversible implementations of computation, such as
S2LAL, can only implement logically reversible computation.
For a circuit to be physically reversible, often referred to as
adiabatic, it must adhere to the following properties [7]:

1) Do not use diodes due to their inherent voltage drop
2) Don’t turn a transistor on when there is a voltage

differential between the source and drain
3) Don’t turn a transistor off when there is a current

differential between the source and drain unless the
source and drain are connected along another path

Adhering to these tenets can be used build CMOS circuits that
have asymptotically 0 energy dissipation (barring leakage).
Again, these tenets can only be used to implement logically
reversible computation. S2LAL incurs some complexity and
speed overhead, but is capable meeting these constraints. Even
though implementing circuits in S2LAL is slower than the
irreversible alternative, the lower energy dissipation will allow
for significantly greater transistor density while remaining
within thermodynamic limits [6].

The details of S2LAL are best left to [5], but we will discuss
some of the current simulation and implementation results. A
slight variant of S2LAL, called 2LAL, has been simulated and
physically implemented with results that we can discuss here.

Cadence Spectre simulations are performed on 2LAL on
350nm and 180nm MESA (Sandia’s in house fab) operating
at 1MHz [7]. At 350nm, the energy dissipated per FET was
measured 230 eV. At 180nm, the energy dissipated per FET
was measured at 43 eV. Comparable results have been ob-
served from other fabs, including TSMC. This is significantly
better than even end of life CMOS energy dissipation of 1 keV
that we could achieve in the best-case of the next 30 years
using standard circuit construction! Physical implementations
of 2LAL have also been created awaiting measurement [7].

We will take adiabatic physical circuits as a given, which is a
realistic assumption based on the referred Michael Frank work
at Sandia. For the remainder of this work we will focus on
the logical reversibility challenges, particularity for processor
implementations.

III. REVERSIBLE PROCESSORS

Computer operations per second have historically scaled
linearly with power usage [3]. This scaling will lead power
usage for a ZFLOP/s computer to reach 10s of Gigawatts
power dissipation. Even if transistor efficiency was operating
at the boundary at which computation begins to become
indistinguishable from thermal noise, a ZFLOP/s computer
would consume more than a Megawatt. Even if leaps were
made in CMOS or post-CMOS technologies, computational
efficiency is still restricted by Landauer’s limit, which prevents
any ZFLOP/s computer from operating bellow roughly 500
kilowatts. This is untenable for a number of reasons. First,
because the majority of the power consumed is expelled in
heat, we cannot to continue to increase FLOP/s without the
internal temperature of the chips causing damage to them-
selves. Second, it becomes prohibitively difficult to provide
power to large scale computer systems [3].

As a result, processor architecture has been an attractive
place to apply reversible computing which theoretically can
break the relationship between computation and power—in
ideal circumstances. In reality, parasitic effects and gate leak-
age retain this linear relationship between power consumption
and FLOP/s, but this is something that can be pushed artifi-
cially close to zero. Regardless, even with the parasitic/leakage
in CMOS technology, we can achieve tens to hundreds times
better power efficiency than non-reversible counterparts.
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The most complete of processor implementations which
leverage reversible techniques is Carlin Vieri’s 1999 PhD dis-
sertation [9]. Vieri utilizes a primitive variant of S2LAL/2LAL
called Younis Pipelined Split-Charge Logic Recovery [10]—
another power clock based scheme. As previously men-
tioned, adiabatic circuit techniques can only implement log-
ically reversible computation (i.e. information cannot be de-
stroyed) [5]. This means the processor architecture must be
completely reversible. The datapath of this architecture is pre-
sented in Figure 1. This requires re-designing CPU architec-
ture, instruction set architectures, and programming languages.
We discuss these constraints in the following sections:

A. CPU Architecture

The execution path of any instruction within the CPU
must invertible at a later date. This means that all interme-
diate products must be stored so that the computation can
be reversed to re-derive the inputs from the products (the
fundamental notation of logical reversibility). For example, an
ADD instruction would take two integers A and B, and result
in A+B, and A. Even though the result A+B is all that we
desired, we must also store A, so that the input B can be
re-derived (through subtraction). It is not immediately clear
why performing a subtraction operation is needed to improve
power performance. To understand this, let’s appeal to the first
principles of reversible computation.

For a computation to release asymptotically 0 energy, the
computation must not destroy information. For an operation
like ADD, the inputs A and B are not recoverable from merely
A+B, thus there must be some information destruction. So,
either A or B must be retained (WLOG we assume that A
is kept), so that A and B can be derived from A+B and A.
A+B, the desired result of the computation, may then be used
for whatever purpose it was computed for. If we no longer
want to continue to track both A+B and A as separate signals,
we can collapse them back into A and B by performing the
opposite operation of what was performed originally. In this
case it would be a subtraction operation.

The operation of any instruction within the CPU must follow
similarly. For an instruction to be executed, sufficient products
must be stored so that the instruction may be subsequently
undone. Memory operations may not result in the destruction
of data, thus necessitating “swap” operations rather than read
and write operations. A history of program counter values must
always be stored so as to not overwrite the current program
counter value non-reversibly. The data path is presented in
Figure 1, with a full description of the CPU and its operation
in [9]. Due to the fundamental reversibility of the CPU, the
instruction set must be built to accommodate this structure.

B. Instruction Set Architecture

The pendulum instruction set of [9] is based on the MIPS
RISC architecture. Both future and past instructions must be
known at all times to meet the conditions of reversibility. For
an instruction to be later reversed, that means every instruction
operation must be an injective function with all products saved

so that the instruction can be reversed at a later point. We
will briefly characterize the modifications made to the RISC
instruction set to be reversible:

1) Register to Register Operations: The author of [9]
draws a distinction between register to register instructions
that require retaining extra information (i.e information not
directly used in the computation) called non-expanding, and
instructions that do not require saving information, called
expanding. The non-expanding register to register instructions
take the form of:

Rsd ← F(Rsd, Rs)

These operations can be performed reversibly, as the function
being applied to the operands Rsd, Rs will not overwrite
another register (as this would be irreversible). So, the result
can only be placed in one of the operand registers. In a non-
expanding operation such as this, the operation can be reversed
purely based on the result and the input. For example, take
F = ADD. You could perform a register to register operation
such as Rsd ← ADD(Rsd, Rs). You do not need to maintain
extra information to reverse this instruction as long as Rs is
still present, which it must be if we are unrolling instructions
in the order which they were executed (necessary for reversible
computation)! For example, to reverse this instruction the
core must execute Rsd ← ADD−1(Rsd, Rs). As we observed,
non-expanding register to register operations can simply be
reversed.

Expanding operations require storing extra information
alongside the result of the instruction and what the inputs to
the instruction were. These instructions take the form of:

Rsd ← F(Rsd, Rs)⊕ P

The value of P must be stored by the CPU so that the
instruction can be reversed at a later date. For example if a
left shift operation is performed F = LSHIFT there is not
sufficient information to recover the inputs. For example, we
could perform Rsd ← LSHIFT(Rsd, Rs), where Rsd was
a register that we want to shift up by Rs bits. This is not
sufficient to recover the high-order bits that were pushed out.
Similarly if we were to preform Rs ← LSHIFT(Rsd, Rs),
we would have the original value to shift but not how much
it was shifted by. This means more information needs to be
retained and stored, this value called P, and applied in the
reverse step. P will take extra memory to store. All register to
register instructions fit this structure. This is somewhat limiting
in terms of which registers can be accessed. If registers need
to be freed to compute on other data, a memory operation
needs to be performed, which again must be fully reversible.

2) Memory Access: Memory access, whether it be instruc-
tion fetches, the register file, or the data memory, can only
perform exchange operations. In this way, memory addresses
are never overwritten and can be unraveled at any time, thus
retaining reversibility. The full design of memory operation
instructions can be found in [9].
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Fig. 2. Proposed alternative locally reversible architecture that is globally irreversible. This will allow the CPU architecture to execute a standard ISA,
incurring minimal penalty compared to a fully reversible architecture.

3) Control Flow: Branch instructions provide the condition
to be evaluated as in traditional RISC architecture, the target
address, and the value being compared. If a branch is taken the
program counter value is exchanged (as you cannot overwrite
information) with the target address. The instruction in the
destination address must be an identical branch instruction that
points back to where the original branch was from. This allows
all branches to be taken in reverse. The implementation of this
is in [9].

C. Programming Languages

Novel programming languages must be built around the
reversible instruction set. These programs must be completely
reversible. This requires a different perspective for the pro-
grammer, or sophisticated techniques to convert traditional
programs to a reversible program. Reversible computers are
provably universal (they are computationally equivalent to tra-
ditional computers), but to program them requires a significant
paradigm shift for programmers and engineers. To alleviate
this we propose nesting reversible units within irreversible
boundaries. This will provide the majority of the power saving
benefits, while not requiring new architectures or programming
language paradigms. We refer to this structure as globally
irreversible locally reversible computation.

IV. GLOBALLY IRREVERSIBLE LOCALLY REVERSIBLE

Figure 2 presents a hypothetical architecture of the globally
irreversible locally reversible processor. The goal here is
to retain a simple and unmodified instruction set such as
RISC-V, while leveraging the low-power benefits of reversible
computing. The design is divided into Reversible Regions
cordoned off by Irreversible Boundaries:

A. Irreversible Boundaries

The irreversible boundaries of Figure 2 are used to pass in-
formation between reversible regions. In implementation these
will just be a set of registers that can be written to that contain
data and control signals. These registers will hold n bits of
data (1 word of data and control signals). As a result, these
operations cannot perform any better than nkbT ln 2 of energy
dissipation as they are irreversible. However, the goal of this
architecture is to hoist some of the complexity in implementing
reversible operations onto irreversible operations, at a small
cost, and then perform the majority of the computation in the
reversible hardware.

B. Reversible Regions

Every reversible region will follow the principles of re-
versible computation (i.e adiabatic circuit implementing non-
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destructive computation). These regions can be executed for-
ward to produce some result (and potentially unneeded prod-
ucts to guarantee reversibility). The energy dissipation, Ediss,
of these regions can asymptotically approach 0 eV if operated
properly. The memory and pipeline will be implemented in a
reversible manner.

Fig. 3. Vieri’s proposed memory design [9] that performs “sawp” operations
as to avoid overwriting data which would be an irreversible operation.

1) Memory: As we have seen from [9], it is possible to
build fully reversible memories capable of performing “swap”
operations. This memory system can then be used for the
instruction cache, register file, and data cache. A very high
level description of the XRAM flow from Vieri’s thesis is
presented in Figure 3. The memory block takes some input
value (8 bits in Vieri’s design) and has an 8 bit output. The
control signals allow a “swap” operation be be performed,
thus exchanging the DataIn with the value at the address
Ain which is bumped to DataOut. The XRAM can then
simply be reversed so that the DataOut value is written to
the value stored at address Bin.

In our proposed architecture, the memories blocks will be
cordoned off with irreversible boundaries as in Figure 2. If
a read needs to be performed the following steps can be
taken. The DataIn and DataOut value is left in whatever
its current state is. The Ain value and Bin will be irreversibly
overwritten with the desired address. The reversible memory
will then be executed forward to get the desired value on
DataOut, which is then irreversibly copied. The memory
block can then be executed in reverse to restore the value to
its original memory location. Internal to the memory block
there can be theoretically 0 energy dissipation. The only
operations that dissipate energy are the irreversible copies from
the irreversible boundary, which constitutes a small percentage
of total transistors used in the memory operation. The simple
RISC pipeline in Figure 2 will interact in each stage with the
memory in this manner.

a) Instruction Fetch: The instruction fetch copies the
program counter to the reversible instruction cache. The in-
struction cache can be executed forward to get the desired
instruction, which is then copied irreversibly, and then the

instruction cache can be reversed to restore that value back
to its correct memory location.

b) Execution: After the control signals from the decode
stage have been determined, the registers needed for compu-
tation can be gathered from the reversible register file. The
register number is used as the Ain address. The register file
is executed forward to get the requested register value which is
irreversibly copied, then the register file is reversed to restore
that register value to its original location in memory. The
original instruction can then be executed on these values. As
in the previous section, no information will be destroyed and
all intermediate products are saved, which will be necessary
for reversing the operation.

c) Memory: If products need to be written to memory
the address can be provided to the reversible data cache and a
swap operation can be performed with the new data that needs
to be written.

d) Write Back: Finally, if data needs to be written back
to the data cache, a value can be written the the irreversible
boundary, and a swap operation is performed to set the value
in memory.

2) Pipeline: Outside of the memory operations the proces-
sor pipeline will closely resemble that of Vieri’s design [9].
This means the pipeline itself and actual computation being
performed will expel asymptotically 0 eV. Instead of unwind-
ing the instruction at a later data when the program as a whole
is being unwound as in Vieri’s construction, by decoupling
the memory from the pipeline in our design the instructions
path of execution could be immediately unwound after its
execution. This means that the instruction set implemented
by our proposed design in Figure 2 could be a standard RISC
implementation like RISC-V. No extra space would be needed
to store products for future use in reversing the processor as the
pipeline is being unwound immediately after the execution of
the instruction. This would also break the dependence across
instructions and across branches. For a relatively small cost
we can dramatically simplify the control flow and instruction
set of a reversible processor.

V. RENEWED DEMAND FOR PARALLEL ARCHITECTURE
AND CONCLUSION

Reversible logic and its implementation comes at a signifi-
cant cost in performance. In particular, every gate needs to be
tied to to a set of synchronized power clocks. These clocks
provide the power to the system and allow adiabatic transitions
to occur. The relationship between the energy dissipation of an
adiabatically driven transistor, and clock “period” τtr is given
by [5]:

Ea = ζtrCLV
2
dd

RCL

τtr

In this relation, ζtr is the ”smoothness” of the voltage clock;
CL is the capacitance of the transistor; Vdd is the high voltage
value; R is the resistance of the charging path; τtr is the
duration of the linear ramp of the power clock [5]. As τtr → 0
then Ea → 0. Thus, as the clock period lengthens (τtr), the
energy consumption decreases.
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This means that slower clock frequencies will be architec-
turally desirable. Such a shift will necessitate designs with
greater parallelism, larger instruction re-order buffers, and in
general more operation performed over a single clock cycle.
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