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ABSTRACT
Voltage fluctuation sensors measure minute changes in an FPGA
power distribution network, allowing attackers to extract informa-
tion from concurrently executing computations. Previous voltage
fluctuation sensors make assumptions about the co-tenant com-
putation and require the attacker have a priori access or system
knowledge to tune the sensor parameters statically. We present the
open-source design of the Tunable Dual-Polarity Time-to-Digital
Converter, which introduces three dynamically tunable parameters
that optimize signal measurement, including the transition polarity,
sample window, frequency, and phase. We show that a properly
tuned sensor improves co-tenant classification accuracy by 2.5×
over prior work and increases the ability to identify the co-tenant
computation and its microarchitectural implementation. Across
13 varying applications, our techniques yield an 80% classification
accuracy that generalizes beyond a single board. Finally, our sensor
improves the ability of a correlation power analysis attack to rank
correct subkey values by 2×.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and counter-
measures.
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1 INTRODUCTION
Cloud providers offer FPGAs as a service. FPGA’s versatility makes
them efficient compute engines for neural networks [8], genome
sequencing [3], secure database transactions [1], networking [31],
and homomorphic encryption [29]. These applications have strict
requirements for data confidentiality and computational integrity.

FPGA cloud providers use strict time-sharing schemes where a
user rents the entire FPGA. This can leave the FPGA under-utilized.
FPGA virtualization maximizes utilization by supporting multiple
concurrent users [41]. It can reduce costs and increase efficiency,
making it an attractive option for cloud service providers.

Unfortunately, FPGA virtualization introduces a side channel ob-
servable by an attacker implementing a voltage fluctuation sensor
within their programmable logic. Voltage fluctuation sensors mea-
sure minute voltage changes in the power distribution network that
expose details about co-tenant computations. Voltage fluctuation
sensors are used as a covert channel [35, 42] or a side channel to
extract cryptographic keys of co-located encryption cores [35, 42].
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Figure 1: 1○ An attacker spatiotemporally locates with a vic-
tim. 2○ The attacker instantiates our Tunable Dual-Polarity
TDC. 3○ Our dynamic tuning techniques improve the ability
to classify victim co-tenant computation by 2.5×. 4○ After
recognizing a cryptographic core, dynamic tuning increases
the effectiveness of correlation power analysis by 2.2×.

Time-to-Digital Converters (TDCs) are a common voltage fluctu-
ation sensor that measure the propagation delay through a linear
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Figure 2: Remote TDC Threat Model: 1○ An attacker is given access to a remote multi-tenant FPGA and programs it with a
voltage fluctuation sensor. 2○ The sensor readings are gathered and sent to the attacker for analysis. 3○ The attacker tunes the
parameters 𝜃 and 𝜙 to better extract co-tenant information. This paper studies the impact of 𝜃 and 𝜙 tuning.

array of logic elements, which is a function of the power distribution
network (PDN) voltage. A slower propagation indicates that the
PDN is stressed by some computation. These voltage fluctuations
over time can be measured with consecutive TDC output captures.

Figure 1 shows our open-source pipeline. In Stage 1○, an at-
tacker co-locates temporospatially with a victim user. The attacker
measures the shared power distribution network in Stage 2○. Our
open-source Tunable Dual-Polarity TDC allows the attacker to dy-
namically tune its sensing parameters, including transition polarity,
sample window, frequency, and phase. Previously proposed TDC
sensors are statically tuned in one or more of these parameters,
which requires detailed knowledge of the computational environ-
ment and target computation. Utilizing these techniques in Stage
3○, we demonstrate that a well-tuned sensor can improve classifica-
tion accuracy by 2.5× over a statically-tuned sensor that incorrectly
characterizes its environment or target computation. After success-
fully classifying an AES computation, we demonstrate in Stage 4○
that proper sensor calibrations increase the ability to correctly rank
subkey values by 2× in a Correlation Power Analysis (CPA) attack.

The contributions of this work are:
• An Open-Source Tunable Dual-Polarity TDC sensor for per-
forming side-channel attacks on FPGAs

• A study of three metrics for measuring the propagation dis-
tance of rising and falling transitions

• A technique for maximizing channel information by adjust-
ing capture window duration

• A method for tuning to the unknown phase of a co-tenant
computation and isolating it from the environment

• A study characterizing the impact of these parameters on a
13-application, cross-board classification problem

• An application of our tuning methods to a multi-tenant Cor-
relation Power Analysis attack

The paper is organized as follows: Section 2 presents the threat
model. Section 3 describes our Tunable Dual-Polarity TDC and
its tuning abilities. Section 4 experimentally verifies the tuning
optimizations presented in the previous section, and then shows
how this can be leveraged to perform our classification attack as
well as a Correlation Power Analysis. We conclude in Section 6.

2 THREAT MODEL
Figure 2 describes the proposed threat model. The attacker is pro-
vided access to a cloud FPGA. The attacker has a design with a
voltage fluctuation sensor and deploys it on the FPGA. We assume
the system provides logical separation of the tenants [16, 21] and
the attacker is restricted to system-defined interfaces, e.g., those

provided by a shell. The attacker gathers the sensor readings, deter-
mines if a targeted co-tenant is present, and extracts confidential
information from them. The attack is performed entirely remotely.

The attacker is a malicious adversary that aims to extract infor-
mation from spatiotemporal co-tenants. This could be as simple
as whether a co-tenant is currently using the FPGA, e.g., to know
when to launch a fault attack [14, 19, 37]. The attacker could clas-
sify whether a specific type of computation is occurring on the
shared FPGA, e.g., is the co-tenant performing encryption? It could
infer details about the co-tenant’s design, e.g., are they using a soft
processor? Is it a RISC-V processor? The attacker could also learn
information about the data being computed upon, e.g., extracting a
cryptographic key [13, 34, 42], and leverage the architectural details
learned about implementation to increase recovery speeds.

The attacker can implement a voltage fluctuation sensor. Our
voltage fluctuation sensor is a variant of a TDC sensor [43]. We
assume the sensor will pass bitstream analysis techniques that
detect remote attacks [20]. As discussed later, our sensor passes the
checks performed by Amazon AWS F1 instances.

We do not make any assumptions about where the sensor is
placed, e.g., the victim computation does not need to have one of its
wires running through it [12, 30, 32]. However, the sensors are more
sensitive to computations that are spatially closer [17, 30], and so,
as proximity decreases, demand for sensor tuning described in this
increases. We consider only attacks within the same programmable
logic. However, similar attacks have been shown from the FPGA
to a CPU on the same die [42], across dies on a 2.5D integrated
package [10], and across chips on the same board [11, 35].

3 TUNABLE DUAL-POLARITY TDC
Our Tunable Dual-Polarity TDC1 has four key features: 1) it cap-
tures both rising and falling transition polarities (Dual-Edge); 2) it
provides real-time adjustment of the sample window duration; 3) it
provides real-time phase adjustment of the sample clock relative to
the target computation; 4) it provides real-time frequency adjust-
ment of the sample clock. We use these features to tune the sensor
to the voltage fluctuations of the PDN caused by the target.

Figure 3 shows Tunable Dual-Polarity TDC architecture. The
sensor’s core is a pulse generator that induces rising and falling tran-
sitions through a delay line at a configurable frequency 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 .
A single pulse contains a positive (0 → 1) and a negative (1 →
1The sensor architecture and the sensor implemented alongside a PicoRV core execut-
ing AES has been open-sourced for the PYNQ-Z2. Additionally, we provide an easy-to-
install PYNQ package for interacting with the sensor and an example Jupyter Notebook
studying how 𝜙 shifting can be used for isolating relevant computation on the PicoRV
running AES. All this is available at: https://github.com/KastnerRG/Tunable-TDC.



Turn on, Tune in, Listen up: Maximizing Side-Channel Recovery in Time-to-Digital Converters FPGA ’23, February 12–14, 2023, Monterey, CA, USA.

Programmable 
Clock 

Generator

Pulse 
Generator

D
Q

Output
Sequence

Rising Transition  0: 1111_1111_1111_1111_1111_1111_1111_1111_1111_1110_0000_0000_0000_0000_0000_0000 
Falling Transition 0: 0000_0000_0000_0000_0000_0110_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111
Rising Transition  1: 1111_1111_1111_1111_1111_1111_1111_1111_1111_1001_0000_0000_0000_0000_0000_0000
Falling Transition 1: 0000_0000_0000_0000_0000_1010_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111

Launch Clock

Capture Clock

Capture Register Outputs

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

D
Q

2
Output[0] Output[1] Output[2] Output[3] Output[63]

Output[0] Output[63]
Propagation Distance

Co-tenant Clock

Programmable 
Clock 

Generator

1

Figure 3: Tunable Dual-Polarity Time-To-Digital Converter Architecture: A pulse generator produces falling and rising transi-
tions that propagate through delay line elements. Output capture registers record the transitions based on the capture clock.
PDN voltage fluctuations affect the propagation speed and cause variations in the transition point (red).

0) pulse edge. Positive and negative pulse edges are issued se-
quentially in the Launch Clock domain. Pulse edges cause falling
and rising transitions to propagate through a linear array of de-
lay line elements to the Output capture register, which is con-
trolled by the Capture Clock. 𝜃 is the phase difference between
the Launch Clock and the Capture Clock – the time between
the pulse launch and the subsequent capture of the transition in the
output registers. When 𝜃 is set correctly, a transition will be propa-
gating through the delay line when the output registers are clocked
and record a metastable transition. The propagation distance is the
number delay elements the transition has passed through.

An example output sequence from two consecutive pulses is
shown at the bottom of Figure 3. Each pulse causes a falling and
rising transition to be captured at the output. Rising Transition 0
shows that the 0→ 1 transition reached Output[38].Falling Tran-
sition 0 shows that the 1→ 0 propagated to somewhere between
Output[21] and Output[23], with some metastability between
the two points. In the next pulse, Rising Transition 1 propagates dif-
ferently; the 0 → 1 transition propagates to between Output[36]
and Output[39]. Similarly, Falling Transition 1 propagates to be-
tween Output[20] and Output[23]. These changes reflect PDN
voltage fluctuations that change the delay line propagation. The
variations provide potential information about the operation of the
FPGA, including computation by co-tenants.

The sampling frequency is dictated by the length of the delay line
and the speed of the underlying FPGA logic. If a higher effective
sampling frequency is needed, multiple launch/capture clock pairs
with a known phase offset can be generated by the clock generator
as is done in related work [4, 36, 39].

Pulse Generator: The pulse generator produces positive (0 →
1) and negative (1 → 0) pulse edges that cause falling and rising
transitions, respectively, in the delay line. Each sample produces
a rising and a falling transition on the capture registers. A trace
is a series of samples. The pulse generator has two configurable
run-time parameters: the sampling frequency 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 , which is an
integer fraction of the launch clock frequency, and the number of
pulses. Figure 3 demonstrates a trace length = 2, i.e., two rising
and two falling transitions. We show that both transitions contain
useful information in Section 4.

Programmable Clock Generators: The Tunable Dual-Polarity
TDC has two programmable clock generators implemented using
a Xilinx Mixed-Mode Clock Manager (MMCM). The first MMCM
(Figure 3 1○) controls the input clock to the TDC and the phase
relationship 𝜙 between the target clock and the sensor clock. Sec-
tion 4.4 discusses the importance of tuning 𝜙 to capture relevant
information about a co-located computation better.

A second MMCM (Figure 3 2○ ) generates the launch and cap-
ture clocks with a programmable phase offset, 𝜃 , between them.
Changing 𝜃 modifies when the pulse generator generates an edge
and when the capture clock fires and records the location of the sub-
sequent transition in the output registers. Section 4.3 demonstrates
the importance of tuning 𝜃 .

During compilation, the TDC sensor is configured to pass timing
checks. The phase relationship 𝜙 is unconstrained, and 𝜃 is set to
2𝜋 . This means that the TDC sensor cannot be detected by tools
that check for timing violations [20].

Delay Line and Capture Registers: The delay line in Figure 3 is
a series of combinational logic elements that propagate the rising
and falling transitions caused by the pulse generator. The delay
elements are constructed from identical digital circuit elements that
aim to provide a linear propagation delay, 𝜏 . The delay elements
of the TDC should be placed and routed with uniform spacing to
ensure consistent delay between each element and a uniform delay
through the entire chain.

The Tunable Dual-Polarity TDC uses the fast look-ahead CARRY
primitives in Xilinx FPGAs to create the delay line. The CARRY
logic provides a relatively linear delay between each output bit
within a single CARRY primitive. The carry logic is configured to
compute Output = 65’h0_ffff_ffff_ffff_ffff + input so
that when input changes from 65’h0→ 65’h1 on a positive pulse
edge, the output of the delay line is a transition with falling polar-
ity from Output = 65’h0_ffff_ffff_ffff_ffff to Output =
65’h1_0000_0000_0000_0000. A transition with rising polarity
is produced on the negative pulse edge.

The interplay between the number of bits in the delay line and
𝜃 is also a critical TDC design consideration. The delay line length
limits the maximum value of 𝜃 and the sampling frequency. A delay
line that is too short may not capture all of the PDN variations
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induced by a target, but a long delay line increases resource con-
sumption. Characterizing how a target computation affects the PDN
and the 𝜃 value that best measures variations are crucial for tuning
the sensor to provide the most information.

The capture registers shown in Figure 3 record the output of each
bit of the carry delay line in the capture clock domain. The path
from the pulse generator to the high-order bit of the output meets
timing constraints in the FPGA toolchain, and the launch clock
and capture clock are configured to be in phase during compilation.
This means that the TDC sensor cannot be detected by tools that
check for timing violations [20].
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Figure 4: Tuning Parameters for our Tunable TDC Sensor. 𝜙
and 𝜃 define the relationship between the launch, capture
and target clocks in our Tunable Dual-Polarity TDC. 𝜃 is the
known phase relationship between the launch and capture
clocks and affects the location of the transition bit index. 𝜙
is the unknown phase relationship between the launch and
target clock. Variations in PDN voltage are caused by power
consumption around the positive edge of the target clock.
Tuning is the process of searching for 𝜙 → 0 such that power
variations maximize the extracted information.

𝜃 and 𝜙 Tuning: The programmable clock generators allow the
Tunable Dual-Polarity TDC to tune its parameters to optimize the
information sampled from the PDN. Figure 4 defines the relation-
ship between the target clock, the capture clock, and the launch
clock using 𝜃 and 𝜙 , the effect of the target computation on 𝑉𝑑𝑑 ,
and the effect of varying 𝜃 and 𝜙 on the extracted information. The
PDN voltage𝑉𝑑𝑑 varies in response to the target’s rising clock edge.

The upper right graph in Figure 4 demonstrates the effect of
varying𝜃 from 0 to 2𝜋 . Increasing𝜃 providesmore time for the pulse
to propagate through the delay line; as 𝜃 increases, the transition
bit index increases. Section 4.3 experimentally demonstrates the
importance of tuning 𝜃 .

The lower right graph in Figure 4 demonstrates the effect of
varying 𝜙 from −𝜋 to 𝜋 . Changing 𝜙 will change the sampling
windowwith respect to the target computation. When the sampling
window is correctly positioned to the target clock, the sensor output
will maximally change in response to the variations in current
drawn by the target. This will cause an increase in the information
measured at the sensor. Section 4.4 demonstrates how our TDC
sensor enables 𝜙 to be tuned to ensure that the sample window is
optimized with respect to the target computation.
Propagation Metric: When 𝜃 is tuned correctly, the capture clock
will record how far the signal has propagated through the delay
elements. The signal propagation distance can be measured as the

index in the capture register. The least significant bits generally have
their post-transition value, and the most significant bits typically
have their pre-transition value. This imprecise definition reflects
the metastability around the transition point that can cause multiple
bit flips. This metastability may contain useful information, and
ignoring these flips could reduce the side-channel information. This
behavior is shown in rising/falling Transition 1 of Figure 3.

We examine three propagation metrics:

• First Index: The index of the first bit in Output that is not
equal to Output[0]

• Last Index: The index of the last bit in Output that is equal
to Output[0]

• Binary Hamming Distance: For rising transitions, the binary
Hamming distance from 64’h_0000_0000_0000_0000, and
for falling transitions, the binary Hamming distance from
64’h_ffff_ffff_ffff_ffff.

In Figure 3, the First Index metric produces the sequence 38,
20, 36, 19. The Last Index sequence is 38, 23, 39, 23. The Binary
Hamming Distance sequence is 39, 22, 38, 22. Section 4.3 explores
the efficacy of each metric.

4 RESULTS
We now report results on the impact of 𝜃 , 𝜙 , and propagation met-
rics, as applied to the classification experiment to determine if the
co-tenant is a cryptographic core and, if so, perform a correlation
power analysis. The sensor, classification data on 13 applications,
and classifier network are released as open source.

4.1 Experimental Setup
Our experimental platforms are Amazon Web Services (AWS) EC2
F1 instances with Xilinx UltraScale+ XCVU9P-FLGB2104 FPGAs
and six PYNQ-Z2 boards with Xilinx ZYNQ XC7Z020-1CLG400C
FPGAs. On the PYNQ systems, the device is programmed with our
sensor and test designs through the Python Productivity for Zynq
(PYNQ) infrastructure. The AWS EC2 F1 instances are launched
through the EC2 interface and programmed with the unique AGFI
identifier associated with our sensor designs. The AGFI is gener-
ated by Amazon’s unmodified compilation flow with the design
checkpoint we provide. Our sensor has passed all design analysis
techniques performed by AWS.

A 64-bit Tunable Dual-Polarity TDC is instantiated on PYNQ-
Z2 and a 256-bit Tunable Dual-Polarity TDC on AWS. The launch
and capture clock domains operate at 100 MHz. This results in a
sampling rate, 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 , of 25 MHz. MMCM 1○, which allows for the
phase shifting of 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 , produces a 100MHz output clock. The
internal 𝐹𝑣𝑐𝑜 is maximized for the two MMCMs so that the step
granularity of 𝜃 and 𝜙 is maximized with a step size of 11.16 ps on
AWS and 14.88 ps on PYNQ.

4.2 Applications
Our experiments use our Tunable Dual-Polarity TDC to classify
the characteristics of a co-tenant. We have 13 unique applications
containing IP cores using different architectural features. The appli-
cation IP core and the sensor are implemented on the same FPGA.
They are logically and physically isolated. The characteristics of
the applications are described in the following paragraphs.
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Sensor Only: The primary goal of the sensor-only design is to
model the lack of another co-tenant. This design only contains the
voltage fluctuation sensor and associated data collection logic. This
mimics a scenario where only the attacker is present on the FPGA.

Ring Oscillators: Ring Oscillators are a malicious circuit with
the sole purpose of aggressively consuming power. These are imple-
mented as banks of combinational loops, resulting in rapid switch-
ing and power consumption as the circuit cannot settle on a single
output value. Such a circuit can cause voltage disruptions in the
power distribution network and can be used as a covert channel or
to induce faults [14, 19, 37].

Arithmetic-Heavy: FPGAs are particularly well suited for high-
intensity signal processing tasks with arrays of digital signal proces-
sors (DSPs). As an approximation of these structures, we implement
arrays of DSPs performing a pipelined fused multiply-add opera-
tion. All DSPs operate in a single clock domain and compute upon
data generated by a randomly-seeded, linear-feedback shift register.

Cryptographic Cores: We study ten different implementations
of cryptographic computations consisting of two algorithms (AES,
PRESENT) implemented on five different architectures (Custom
HLS IP core and as software running on Orca, MicroBlaze, PicoRV,
and ARM CortexM3 soft processors).

4.3 𝜃 Tuning and Metric Selection
As shown in Figure 4, 𝜃 is the phase difference between the launch
and capture clocks and dictates how long a transition is allowed to
propagate through the delay line. It plays two important roles: first,
𝜃 determines the position of the transition in the output and can be
used to avoid undesirable behavior caused by discontinuities in the
FPGA architecture; second, 𝜃 defines the duration of the sampling
window, when the delay line is measuring PDN variations.

Figure 5 demonstrates the effect varying 𝜃 has on the transi-
tion index as measured by the First Index, Last Index, and Binary
Hamming Distance metrics across both falling and rising transition
polarities. These experiments are performed on the PYNQ-Z2 Sensor
Only and AWS Sensor Only designs. In the experiment 𝜃 is increased
from 0 ps with a step size of 11.16 ps on AWS and 14.88 ps on PYNQ,
as determined by the maximum 𝐹𝑣𝑐𝑜 frequency for the family and
device speed grade. At each value of 𝜃 a trace of 214 samples is cap-
tured, where a sample is one rising and one falling transition. This
process is repeated until the transition index exceeds 64 bits, the
maximum length of the delay line for our PYNQ-Z2 implementation.
Next, we calculate the transition index using First Index, Last Index,
and Binary Hamming Distance metrics, for each value of 𝜃 , for each
trace, for both rising/falling transition polarities. The average value
of the trace at each value of 𝜃 is plotted. Expressed as the error
bar at each point is the standard deviation of the respective trace.
Standard deviation, as we will show, is a good measure of the sensi-
tivity of the sensor to voltage changes. The rising/falling transition
polarities are shown in blue/orange for AWS and red/green for
PYNQ. The three sub-graphs correspond to the three propagation
metrics from Section 3 which are studied in the following sections.
First Index: From Figure 5(a) we see that irregularities in the prop-
agation of the rising transition are immediately apparent within
both the PYNQ-Z2 and AWS. Plateaus where the transition index
does not increase appear for ∼40 ps (∼5 ps) on PYNQ-Z2 (AWS)
are divided by sloped regions where propagation is significantly

(a) First Index metric

(b) Last Index metric

(c) Binary Hamming Distance metric

Figure 5: Comparison of the three propagation metrics and
two transition polarities as 𝜃 is increased from 0 ps. Vertical
lines record the variance of a trace at each value of 𝜃 . The First
Index metric is particularly susceptible to plateaus caused by
the underlying CARRY4 (7-Series) and CARRY8 (UltraScale+)
primitives that cause areas of low sensitivity but has high
variance elsewhere. Falling transitions have fewer plateaus
and less variance than their rising transition counterparts.

faster at ∼.15𝑏𝑖𝑡𝑠𝑝𝑠 (∼.5𝑏𝑖𝑡𝑠𝑝𝑠 ) on PYNQ-Z2 (AWS). The sloped regions
span four (eight) bits on PYNQ-Z2 (AWS) reflecting the underlying
CARRY4 (CARRY8) primitives.
Last Index: Figure 5(b) demonstrates the behavior of the rising
and falling transitions as measured by the Last Index metric on both
PYNQ-Z2 and AWS. As demonstrated, plateaus are still present
but they are less prominent and the standard deviation is more
consistent across values of 𝜃 on the line. Noticeable plateaus still
exist where the rising transition resembles that of the First Index.
Plateaus are obvious on the AWS device and less on the PYNQ-Z2.
Binary Hamming Distance: Figure 5(c) demonstrates the behav-
ior of the rising and falling transitions as measured by the Binary
Hamming Distance metric on both PYNQ-Z2 and AWS. No prior
method accounts for metastability within TDC output. For example,



FPGA ’23, February 12–14, 2023, Monterey, CA, USA. Colin Drewes et al.

if a rising transition falls within Output[36:40] as in Figure 3, nei-
ther prior metric is able to discern between 4b’0101 and 4b’0111,
potentially missing important information. The data in Figure 5(c)
demonstrates that there are few plateaus when using the Binary
Hamming Distance metric, and that the standard deviation is rela-
tively consistent across the delay line.

The variable 𝜃 provides the ability to choose where in the delay
line a transition falls, and therefore the ability to avoid plateaus we
have observed in this section. For the remainder of the paper we
use the Binary Hamming Distance metric for measuring rising and
falling polarities due to its improved characteristics.

The delays of the carry outputs do not monotonically increase
due to the use of carry lookahead adders in the FPGA architecture.
Permuting the outputs allows the timing to be maintained [13]. This
would change the behavior of the first/last index metric, making
them more linear. It does not effect the Binary Hamming Distance.

4.4 𝜙 Tuning and Background Subtraction
𝜙 is the phase relationship between the target clock and the launch
clock of the sensor. Our Tunable Dual-Polarity TDC can dynami-
cally adjust 𝜙 to tune to the target clock and maximize measured
information. This provides the ability to reliably isolate where in-
formation channel is maximized between the co-tenant and sensor.
This has a significant impact on the side-channel information.

To demonstrate this, we sweep 𝜙 through two complete phase
rotations (4𝜋 ). For 𝐹𝑠𝑎𝑚𝑝𝑙𝑒 equal to 25 MHz this corresponds to
80ns. This process is performed twice: once as a measure of the
background environment when the computation is disabled, and
again when a co-tenant has been enabled. At each position of 𝜙 ,
two traces of 1024 samples are captured. One trace records the
rising transition polarity (↑) where 𝜃 maximizes the rising transi-
tion standard deviation samples and the other trace records the
falling transition polarity (↓) where 𝜃 maximizes the falling tran-
sition standard deviation samples. The Binary Hamming Distance
is computed for each of these transition types. The average (𝜇) as
well as standard deviation (𝜎) of each trace is calculated.

Figures 6(a), 6(c), and 6(b) demonstrate the result of sweeping
𝜙 over the range of 4𝜋 on three different designs: AWS Sensor
Only, PYNQ-Z2 Sensor Only and PYNQ-Z2 PicoRV AES. The first
and fifth row in each subfigure plot the zero-centered trace average
for the rising transition (↑ Δ𝜇) and falling transition (↓ Δ𝜇). The
raw offset in the Binary Hamming Distance is unimportant, so we
consider the deviations from the average across all values of 𝜙 .
The blue line is the data recorded when the computation is off
(Background), and the red line is the data recorded when the target
was on (if applicable). The second and the sixth row plot the point-
wise difference between the red and the blue line in their respective
preceding plots. The third and the seventh row in each subfigure
plot the trace Binary Hamming Distance standard deviation (𝜎) for
the rising transition (↑ 𝜎) and falling transition (↓ 𝜎).

The fourth and eighth plots are point-wise difference between
the red and blue line in their respective preceding plots.
AWS Sensor Only: Figure 6(a) shows the behavior of the Sensor
Only design on the AWS platform. The Background sweep is per-
formed to record the environment. A second background sweep
is then performed to determine whether background is consistent
across multiple sweeps of 𝜙 . A clear signal emerges in the Binary

(a) AWS Sensor Only

(b) PYNQ-Z2 Sensor Only

(c) PYNQ-Z2 PicoRV AES

Figure 6: Measuring sensor output as 𝜙 is swept from 0 to
4𝜋 . Background noise is consistent across multiple sweeps
of 𝜙 , as demonstrated rows 3 and 6 of Figure 6(a) and 6(b).
Background subtraction is critical to isolate the variance
caused by a target from other information sources on the
system and determine the value of 𝜙 that maximizes the
information leakage (yellow). The rising (↑) and falling (↓)
transition variance maxima are offset by 𝜋 .

Hamming Distance of both edges on both background sweeps (rows
1 and 5, ↑ Δ𝜇 and ↓ Δ𝜇). When the difference of the two 𝜙 sweeps
is taken, the Binary Hamming Distance (↑ Δ𝜇 and ↓ Δ𝜇) as well as
the standard deviation (↑ 𝜎 and ↓ 𝜎), is reduced to a flat line.
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(a) (↑ 𝜃𝑚𝑖𝑛 , 𝜙𝑚𝑖𝑛 ): 32% accuracy, Baseline (b) (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑚𝑖𝑛 ): 51% accuracy, 1.6× (c) (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ): 75% accuracy, 2.3×
Figure 7: Our Tunable Dual-Polarity TDC is employed in a 13-way classification task where an attacker extracts the type of
co-located computation. The ability to distinguish co-tenant computations is a measure of side-channel information contained
in the sensor’s traces. 7(a) represents the worst-case where a TDC cannot reconfigure 𝜙 and 𝜃 and achieves 32% accuracy. In 7(b)
the TDC can tune 𝜃 and improves to 51% accuracy. In 7(c) both 𝜃 and 𝜙 have been tuned with background subtraction to isolate
co-tenant information and achieve 75% accuracy, a 2.3× improvement.

The results demonstrate that there is significant background
noise that has an effect on both the Binary Hamming Distance as
well as the standard deviation of a trace. 20 peaks of equal am-
plitude appear over a range of 80 ns within the Binary Hamming
Distance, which implies the existence of 250 MHz logic on the FPGA,
likely the AWS shell logic which. Using background subtraction
techniques [27] it can be removed to isolate the target.
PYNQ-Z2 Sensor Only: Figure 6(b) demonstrates the same ex-
periment on the PYNQ-Z2 platform. We now observe background
peaks that indicate 100 MHz synchronous logic. As on AWS, this
information is consistent across multiple sweeps. When the back-
ground is subtracted, all variation in Binary Hamming Distance and
standard standard deviation is reduced to a noisy flat signal.
PYNQ-Z2 PicoRV AES: Figure 6(c) demonstrates the same ex-
periment performed on PYNQ-Z2 platform when the PicoRV AES
design is operating at 25 MHz. In contrast to the previous two ex-
periments, we take a single background sweep of 𝜙 with the PicoRV
core deactivated, then another sweep of 𝜙 with the processor acti-
vated. The difference between the deactivated/activated 𝜙 sweeps
produces a peak (yellow) that highlights the correct 𝜙 tuning.

Background subtraction produces a single distinct peak over a
range of 2𝜋 in the Binary Hamming Distance (Δ𝜇) and standard
deviation (𝜎) plots. We attribute this single peak to the PicoRV AES
core running at 25 MHz. This behavior is consistent across designs,
algorithms, and architectures. This position of 𝜙 represents not just
where standard deviation is maximized (which may be muddied by
the presence of background information), but where the channel
contains maximum information about the co-tenant. We show in
Section 4.5 that this is the best location for tuning the sensor and
recovering side-channel information.

4.5 Effects of Tuning on Classification
As a precursor to cryptographic key recovery attacks, like a Corre-
lation Power Analysis, an attacker must be able to determine what
and when a cryptographic core is executing. We fill this void by

demonstrating an attack where we accurately classify a co-tenant
computation in a multi-tenant system.

Setup: As described in Section 2, we assume an attacker uploads
a voltage fluctuation sensor to a remote multi-tenant FPGA en-
vironment to extract the architecture and algorithm of co-tenant
computation through the comparison of captured power traces to
a known body of labeled training data. This training data can be
generated in two possible ways. First, a malicious actor, utilizing
two separate user accounts, can instantiate a voltage fluctuation
sensor with one user and attempt to co-locate with the second user,
which instantiates a known design. This would allow an attacker
to build a data set on the same architecture where the attack will
be performed. The second option is to create a data set using local
boards of the same type as the cloud environment. Because this
choice depends on the implementation details of the multi-tenant
model, we will not consider this in our analysis. Such an attack
serves as a violation of the application anonymity guaranteed by
such a multi-tenant system. The attack is performed on each of the
13 applications on 5 PYNQ-Z2 platforms.
𝜃 Tuning: In the following experiment we consider four configu-
rations of 𝜃 : ↑ 𝜃𝑚𝑎𝑥 , ↑ 𝜃𝑚𝑖𝑛 , ↓ 𝜃𝑚𝑎𝑥 , and ↓ 𝜃𝑚𝑖𝑛 . We sweep through
the 64-bit delay line and record a trace’s average and standard devi-
ation at each point. The position where standard deviation has been
maximized for a particular rising/falling transition polarity we call
↑ 𝜃𝑚𝑎𝑥 / ↓ 𝜃𝑚𝑎𝑥 , and the point where standard deviation has been
minimized for a particular rising/falling transition polarity we call
↑ 𝜃𝑚𝑖𝑛 / ↓ 𝜃𝑚𝑖𝑛 .
𝜙 Tuning: The sensor’s 𝜙 will be configured three ways: first at a
state of absolutemaximum standard deviation (𝜙𝑚𝑎𝑥 ), at its absolute
minimum standard deviation (𝜙𝑚𝑖𝑛), and finally the maximum stan-
dard deviation under the background subtraction (𝜙𝑏𝑎𝑐𝑘 ) process of
Section 4.4. Just as in Section 4.4, 𝜙 is shifted in 14.88 ps increments
2688 times at each point, capturing a trace of 128 samples—once
to capture background noise (𝜎𝑏𝑎𝑐𝑘 ), and again once the target
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Table 1: Summary of Prior Work and Quantitative Comparison. Prior works implement a subset of our sensor’s capabilities,
which can be summarized as a tuning tuple (𝜃 , 𝜙) of our sensor. Each tuning tuple is tested in our classification experiment to
determine accuracy and loss and perform a CPA Attack on a soft processor running AES to report the GSR @ 50K, PSR (Min,
Avg, Max) @ 50K, and PGE (Min, Avg, Max) @ 50K traces. No prior experiments have measured how information learned on
one board generalizes to other boards (called Cross-Board) —a crucial consideration for cloud attacks. Our tuning methodology
and TDC Sensor improve co-tenant classification accuracy by 2.5× and increase the rate that correct subkey values are ranked
as most likely (PSR) in a CPA attack by 2.2× relative to an un-tuned sensor.
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[14, 15, 34, 35] ✓ 32.146% 2.159 0× 0% (2%, 15%, 35%) (66, 101, 124) 0×
[6, 7, 13, 17, 40, 43] ✓ 51.160% 1.644 1.591× NA NA NA NA
This Work ✓ ✓ 32.146% 2.159 0× 0% (2%, 15%, 35%) (66, 101, 124) 0×
This Work ✓ ✓ 51.160% 1.644 1.591× NA NA NA NA
This Work ✓ ✓ 75.788% 0.834 2.358× NA NA NA NA
This Work ✓ ✓ 75.552% 0.733 2.350× NA NA NA NA
This Work ✓ ✓ 80.943% 0.668 2.518× 4% (12%, 46%, 90%) (3, 46, 73) 2.2×

application has been enabled (𝜎𝑎𝑐𝑡𝑖𝑣𝑒 ). In the tuning process, 𝜙𝑚𝑎𝑥

(𝜙𝑚𝑖𝑛) is the maximum (minimum) standard deviation of the 𝜎𝑎𝑐𝑡𝑖𝑣𝑒
sweep for a given transition type. The position of maximum stan-
dard deviation after background tuning (𝜙𝑏𝑎𝑐𝑘 ) is the maximum
standard deviation of 𝜎𝑎𝑐𝑡𝑖𝑣𝑒 − 𝜎𝑏𝑎𝑐𝑘 .
Data Collection: The target design and sensor are loaded onto
the device. Then, 𝜃 is positioned at one of ↑ 𝜃𝑚𝑎𝑥 , ↓ 𝜃𝑚𝑎𝑥 , ↑ 𝜃𝑚𝑖𝑛 ,
or ↓ 𝜃𝑚𝑖𝑛 . Finally, 𝜙 is configured to one of 𝜙𝑚𝑎𝑥 , 𝜙𝑚𝑖𝑛 , or 𝜙𝑏𝑎𝑐𝑘 .

We examine the following tuning combinations of (𝜃 , 𝜙): (↑ 𝜃𝑚𝑖𝑛 ,
𝜙𝑚𝑖𝑛) emulates the worst-case of a non-tunable TDC. (↓ 𝜃𝑚𝑎𝑥 ,
𝜙𝑚𝑖𝑛) introduces 𝜃 tuning to demonstrate how the mitigation of
carry-chain non-linearity improves the sensor’s ability to resolve co-
tenant information. (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥 ) demonstrates the significance
of𝜙 tuning on classification accuracy. (↓ 𝜃𝑚𝑎𝑥 ,𝜙𝑏𝑎𝑐𝑘 ) demonstrates
how background subtraction improves our ability to optimize the
co-tenant side channel. (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ) is used to determine which
transition polarity captures the most information, as it can be di-
rectly compared against (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ).

After the sensor is configured, the target computation is launched,
and a trace of 216 samples are gathered. This process is repeated
100 times on each application for a total of 1300 traces per tuning
combination per board. 2

Post-processing: For a group of 1300 traces from a single tuning
configuration (𝜃 , 𝜙) on a single board, we randomly segment each
trace into ten sub-traces of 213 samples. Each sub-trace is de-trended
to remove the DC offset. The Fourier transform of the processed
trace is then computed. From an original set of 1300 traces, we are
left with 1000 rising transition Fourier transforms and 1000 falling
transition Fourier transforms for each application, amounting to
26000 Fourier transforms per board per configuration.
Network Architecture: We train a simple neural network of only
one fully connected layer, a fast and simplistic starting point. We
evaluate the classification accuracy (how accurately our network
can classify among the 13 classes of computation) and cross-entropy

2All of the data sets for each of the 13 applications, for each of the five boards, for each
of the five tuning methods, along with the entire classification pipeline and network
details are available at: https://github.com/KastnerRG/multitenant-classification

loss (how well our network generalizes to unseen data) on all con-
figurations of training on four boards and testing on a 5th.

Classification Results: The results of our experiments are shown
in Table 1, and select confusion matrices from our 13-way experi-
ment are shown in Figure 7. The results are summarized:
(↑ 𝜃𝑚𝑖𝑛 , 𝜙𝑚𝑖𝑛): The baseline dataset exhibits predictably poor per-
formance in our classification task as shown in Table 1 with a 32%
accuracy. The confusion matrix in Figure 7(a) demonstrates that
the classifier struggles across all applications.
(↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑚𝑖𝑛): With the introduction of 𝜃 tuned to the maximum
position, we see an immediate improvement in classification ac-
curacy from 32% to 51% in Table 1, with the confusion shown in
Figure 7(b). This shows that with proper 𝜃 tuning to avoid plateaus,
measured information increases based on its ability to distinguish
between soft processors and their applications.
(↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥 ): With the introduction of 𝜙 tuning, accuracy im-
proves to 75% in Table 1. The confusion matrix for this data set is
shown in Figure 7(c) and robustly determines co-tenant application.
(↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ): To evaluate the effects of background subtraction,
we report our network’s average accuracy and loss for (↓ 𝜃𝑚𝑎𝑥 ,
𝜙𝑚𝑎𝑥 ) and (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ). As seen in Table 1, the network per-
forms 0.236% better without background subtraction; however, back-
ground subtraction decreases the loss (0.733 vs. 0.834). This indicates
that our network generalizes better with background subtraction.

We expand our cross-validation configuration to investigate this
result and understand how well the network generalizes to boards
it has not trained, i.e., cross-board generalization. We train on all
possible

(5
𝑛

)
∗ (5−𝑛) configurations, where 𝑛 ∈ [0, 5] is the number

of training boards of data, and test on the remaining (5 −𝑛) boards
on both (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥 ) and (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ). We also train and test
on the same board, as standard in prior work [15]. The results in
Figure 8 show that when training and testing on the same board
as in ’S’, the network fits to artifacts of the dataset rather than
the computation itself and does not generalize beyond the training
board. As the number of training boards increases, the median
accuracy increases, and the median loss decreases, demonstrating
increased generalization.
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Figure 8: Multi-board Training and Inference Results. Plots
show Accuracy and Loss when training on 1-4 boards with
background subtraction (↓ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ) and without (↓ 𝜃𝑚𝑎𝑥 ,
𝜙𝑚𝑎𝑥 ). Testing always occurs on data from a separate board,
except for when data from the same board is used (denoted
“S”). Background subtraction decreases the cross-board accu-
racy’s interquartile range (IQR) by 2.3× and the loss’s IQR
by 5.8×. Multi-board training and background subtraction
greatly improve cross-board generalization.

The distributions of accuracy and loss as we train onmore boards
behave differently when the network trains on data with back-
ground and without background subtraction. As seen in Figure 8(b),
the interquartile range (IQR) decreases when background subtrac-
tion is added. When we train on four boards and test on a 5th, the
Loss IQR without background subtraction is 0.429, whereas the IQR
with background subtraction is 0.074, an improvement of 5.8×. The
network is more likely to generalize to unseen boards with a smaller
distribution. This is also reflected in the accuracy distribution in
Figure 8(a). In the same four training board setup, the IQR of the
accuracy with background subtraction is 2.3× smaller than without
background subtraction.
(↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ): The use of the rising transition increases the ac-
curacy from 75% to 80% and decreases the loss from .733 to .626.
This indicates that the rising and falling transitions contain differ-
ent information and that both transitions, when properly tuned,
perform well in this classification task.

4.6 Effects of Tuning on CPA
After recognizing a cryptographic core with our classification pro-
cedure, we launch a Correlation Power Analysis (CPA) attack [2] to
extract the key values. Because the values affect power consump-
tion during encryption [34], our tuning techniques decrease the
number of traces needed to extract the key.

Setup: We perform our CPA attack on the PYNQ-Z2 Orca AES
application and consider the configurations (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ) for the
well-optimized sensor and (↑ 𝜃𝑚𝑖𝑛 ,𝜙𝑚𝑖𝑛) as a worst case un-tunable
TDC comparison. The attack is repeated 50 times for each tuning
strategy. We randomly generate a 128-bit AES key each time the
attack is performed. This key is used by the Orca AES application to
encrypt 50000 randomly generated plaintexts known to the attacker.
During the encryption of each plaintext, the attacker collects a trace
of length 8192, aligned by the measurement setup, so the beginning
of the trace coincides with the beginning of the encryption.

A large body of work exists on performing attacks on reducing
traces needed [5], alignment methods [9, 24, 28, 38], or filtration
methods [25, 33]. We have kept our CPA attack as conventional as
possible for a fair comparison of the different sensor configurations.

Following prior work, we analyze the results of the CPA attacks
using multiple metrics [5]. After processing some traces, the CPA
method returns a list for each subkey that ranks the possible subkey
values from most likely to least likely. Partial Guessing Entropy
(PGE) is the position of the correct subkey value in the list, where
lower is better. Partial Success Rate (PSR) is the frequency with
which the correct subkey value is ranked as most likely. Global
Success Rate (GSR) is the frequency with which all correct subkey
values are ranked as most likely. We also consider the mean PGE
as a function of the number of traces. This is frequently used to
compare the performance of CPA attacks [22, 23, 26].

Figure 9: Performance of a CPA attack for (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 )
and (↑ 𝜃𝑚𝑖𝑛 , 𝜙𝑚𝑖𝑛) tuning parameters. Lower average PGE
indicates that the attack is performing better, as the correct
subkey values are ranked as more likely after processing
fewer traces. Our tuning method has a significant impact on
key recovery, lowering PGE by 2.2× at 50,000 traces.

CPA Attack Results: Our results demonstrate that the optimized
sensor configuration (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 ) outperforms the worst-case of
an un-tunable sensor (↑ 𝜃𝑚𝑖𝑛 , 𝜙𝑚𝑖𝑛). Qualitative results are given in
Figure 9, which show that the traces obtained from (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 )
exhibit lower PGE on average. This indicates that fewer traces
are needed to recover the key when using the (↑ 𝜃𝑚𝑎𝑥 , 𝜙𝑏𝑎𝑐𝑘 )
configuration, lowering the overall cost of the attack.

Numerical (Min, Avg, Max) results are given in Table 1. The GSR
statistic shows that the optimized sensor configuration (↑ 𝜃𝑚𝑎𝑥 ,
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𝜙𝑏𝑎𝑐𝑘 ) was able to recover all 16 subkeys in a single trial. In contrast,
a poorly tuned sensor (↑ 𝜃𝑚𝑖𝑛 , 𝜙𝑚𝑖𝑛) never recovered the entire
key. The higher PSR values for the well-tuned sensor demonstrate
that individual subkeys were recovered around 2× more frequently
given the same number of traces as with a poorly tuned sensor.
These results show that optimized sensor configuration is crucial
for identifying co-tenant computation and significantly increases
the rate at which a cryptographic key can be recovered.

5 RELATEDWORK
TDCs for Power Side-Channels: The Tunable Dual-Polarity
TDC allows us to rapidly compare the performance of our tuning
techniques to different “classes” of prior work. Table 1 summarizes
prior and related work as configurations of our sensor.

The majority of these efforts never considered either 𝜃 tuning
or 𝜙 tuning [14, 15, 34, 35]. Such sensors cannot achieve the signal
resolution gains observed in Section 4. These sensors will not apply
well to cloud-FPGA environments or across different FPGAs be-
cause they assume a random 𝜃 and 𝜙 on each device and therefore
do not extract general computation elements.

Some prior work has introduced the concept of 𝜃 tuning [6,
7, 13, 17, 43]. However, many of these are limited in ability and
applicability to the cloud-FPGA environment. For example, the
method proposed in [7] involves re-configuring the number of
delay elements to change where the transition reaches in the delay
line. This does not generalize well to the cloud-FPGA model, as
the delay elements need to be compiled into the design or updated
with partial reconfiguration, making it difficult to respond quickly
to changing conditions in a multi-tenant FPGA.

The authors of [17] consider another primitive variant of 𝜃 tun-
ing, where they connect the pulse generator to several different
places in the delay line through a set of multiplexers. This allows a
user to shift 𝜃 by configuring the input location to the delay line.
This is more runtime configurable but adds complexity to the design
as the clock input must be duplicated and significantly limits the
range of configurability as each position of 𝜃 needs to be predefined.

A more configurable approach for 𝜃 tuning is considered in [6],
which leverages partial reconfiguration for modifying the routing
between each delay element. This relies on that feature being ex-
posed to the end user, which is potentially not an option in a cloud
environment. This will be slower than our approach, which makes
it difficult to adjust to rapidly changing conditions in cloud FPGAs
(i.e., another user’s design is allocated to the board).

The authors of [43] propose that if calibration of the TDC is
required, the clock to the delay line can be phase-shifted using a
programmable clock generator, as we have in this work. They do
not expand on this nor consider how 𝜃 tuning can be leveraged
to avoid irregularities in the delay line or adjust to the PDN load
created by other users’ designs.

The classification experiment we examined in this work is an
essential consideration, as multi-tenant FPGA side-channel attacks
often presuppose when and what computation is running alongside
the attacker, e.g., the attacker assumes that a victim is performing
a cryptographic operation. The first work to propose this [15] fails
to generalize across FPGAs that training data was not collected
on, making it incompatible with the cloud model. It cannot be
generalized because it does not consider 𝜃 and 𝜙 , so it leans heavily

on the architectural features of the device for its classification.
Our work rectifies this limitation and addresses a fundamental
optimization step that must be takenwith power fluctuation sensors.
The classification network used in [15], ResNet50, is significantly
more complex yet performs worse than the simplistic single-layer
network used in this paper. This is an important consideration if
the network is to be implemented in hardware for fast recognition
to launch a CPA attack if a cryptographic device is recognized.

To the best of our knowledge, there is no prior work demonstrat-
ing 𝜙 as we have done in Section 4.4. Alternative solutions that
increase the sampling frequency of TDCs can reduce the impor-
tance of 𝜙 tuning (by increasing the likelihood a transition falls
when there is activity in the PDN); this remains imprecise and
limited as co-tenant frequency increases.
Mitigations: Physical isolation of co-tenants on the FPGA pro-
grammable logic [16, 21] mitigates attacks that require close phys-
ical access [12, 32]. Many remote attacks do not have such con-
straints on sensor placement [34, 42]. Our work reduces the ben-
efits of physical isolation with a sensor designed to improve the
signal-to-noise ratio through 𝜙 and 𝜃 optimization.

Active fences surround the co-tenant IP core with ring oscillators
or other heavy-power-draw circuits [18], which induces noise into
the PDN, making it harder to extract the signal. These techniques
increase power and area consumption. Our sensor improves the
signal-to-noise ratio making attacks more effective, through 𝜙 and
𝜃 optimization, as demonstrated in our results.

Krautter et al. [20] describe techniques that check the design
for structures that resemble side-channel sensors. They focus on
detecting sensors using ring oscillators, those that induce timing
violations, data to clock paths, and high fanouts, which they argue
are indicative circuits used in these threat models. Our sensor is
resistant to these detection techniques as it has low fanout, no
timing violations, and no combinational loops.

6 CONCLUSION
We present the Tunable Dual-Polarity TDC, which enables a first
of its kind pipeline for recognizing co-tenant computation, max-
imizing recovered leaked information, and effectively extracting
confidential information from a victim co-tenant. In a classifica-
tion experiment with 13 applications, our techniques yield an 80%
classification accuracy on 5-board, leave-one-out cross-validation,
a 2.5× improvement over prior work. In addition, our sensor and
tuning methodology improves the rate at which all correct subkey
values are ranked as most likely by 2.2× in a CPA attack.
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